Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Trials ; 19(6): 605-612, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2009317

ABSTRACT

BACKGROUND/AIMS: The HIV Prevention Trials Network 083 trial was a group-sequential non-inferiority trial designed to compare HIV incidence under a novel experimental regimen for HIV prevention, long-acting injectable cabotegravir, with an active-control regimen of daily oral tenofovir disoproxil fumarate/emtricitabine (brand name Truvada). In March of 2020, just as the trial had completed enrollment, the COVID-19 pandemic threatened to prevent trial participants from attending study visits and obtaining study medication, motivating the study team to update the interim monitoring plan. The Data and Safety Monitoring Board subsequently stopped the trial at the first interim review due to strong early evidence of efficacy. METHODS: Here we describe some unique aspects of the trial's design, monitoring, analysis, and interpretation. We illustrate the importance of computing point estimates, confidence intervals, and p values based on the sampling distribution induced by sequential monitoring. RESULTS: Accurate analysis, decision-making and interpretation of trial results rely on pre-specification of a stopping boundary, including the scale on which the stopping rule will be implemented, the specific test statistics to be calculated, and how the boundary will be adjusted if the available information fraction at interim review is different from planned. After appropriate adjustment for the sampling distribution and overrun, the HIV Prevention Trials Network 083 trial provided strong evidence that the experimental regimen was superior to the active control. CONCLUSIONS: For the HIV Prevention Trials Network 083 trial, the difference between corrected inferential statistics and naive results was quite small-as will often be the case-nevertheless, it is appropriate to report and publish the most accurate and unbiased statistical results.


Subject(s)
COVID-19 , HIV Infections , Humans , Clinical Trials Data Monitoring Committees , HIV Infections/prevention & control , Pandemics , Research Design
2.
Lancet HIV ; 8(11): e723-e728, 2021 11.
Article in English | MEDLINE | ID: covidwho-1373322

ABSTRACT

Two multinational clinical trials have shown safety and efficacy of long-acting injectable cabotegravir for HIV pre-exposure prophylaxis (PrEP). These results will alter the landscape of HIV prevention and related research. Nevertheless, designing and conducting this research involved several ethical issues. This Viewpoint describes how we managed ethical issues over the duration of one of these trials (HPTN 083). Specifically, we discuss the rationale for pursuing a long-acting injectable agent in the presence of effective oral PrEP, trial design choices, site selection and local standards of prevention, data monitoring and early stopping, effects of the COVID-19 pandemic, post-trial access, and assessment of long-term safety.


Subject(s)
Anti-HIV Agents/administration & dosage , COVID-19 , HIV Infections/prevention & control , Pre-Exposure Prophylaxis/ethics , Anti-HIV Agents/adverse effects , Health Services Accessibility , Humans , Pandemics , Pre-Exposure Prophylaxis/methods , SARS-CoV-2
3.
Sci Rep ; 11(1): 15531, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333987

ABSTRACT

Trial results for two COVID-19 vaccines suggest at least 90% efficacy against symptomatic disease (VEDIS). It remains unknown whether this efficacy is mediated by lowering SARS-CoV-2 infection susceptibility (VESUSC) or development of symptoms after infection (VESYMP). We aim to assess and compare the population impact of vaccines with different efficacy profiles (VESYMP and VESUSC) satisfying licensure criteria. We developed a mathematical model of SARS-CoV-2 transmission, calibrated to data from King County, Washington. Rollout scenarios starting December 2020 were simulated with combinations of VESUSC and VESYMP resulting in up to 100% VEDIS. We assumed no reduction of infectivity upon infection conditional on presence of symptoms. Proportions of cumulative infections, hospitalizations and deaths prevented over 1 year from vaccination start are reported. Rollouts of 1 M vaccinations (5000 daily) using vaccines with 50% VEDIS are projected to prevent 23-46% of infections and 31-46% of deaths over 1 year. In comparison, vaccines with 90% VEDIS are projected to prevent 37-64% of infections and 46-64% of deaths over 1 year. In both cases, there is a greater reduction if VEDIS is mediated mostly by VESUSC. The use of a "symptom reducing" vaccine will require twice as many people vaccinated than a "susceptibility reducing" vaccine with the same 90% VEDIS to prevent 50% of the infections and death over 1 year. Delaying the start of the vaccination by 3 months decreases the expected population impact by more than 50%. Vaccines which prevent COVID-19 disease but not SARS-CoV-2 infection, and thereby shift symptomatic infections to asymptomatic infections, will prevent fewer infections and require larger and faster vaccination rollouts to have population impact, compared to vaccines that reduce susceptibility to infection. If uncontrolled transmission across the U.S. continues, then expected vaccination in Spring 2021 will provide only limited benefit.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/transmission , Child , Child, Preschool , Hospitalization , Humans , Infant , Middle Aged , SARS-CoV-2/isolation & purification , Vaccination , Young Adult
4.
Ann Intern Med ; 174(8): 1118-1125, 2021 08.
Article in English | MEDLINE | ID: covidwho-1181776

ABSTRACT

Multiple candidate vaccines to prevent COVID-19 have entered large-scale phase 3 placebo-controlled randomized clinical trials, and several have demonstrated substantial short-term efficacy. At some point after demonstration of substantial efficacy, placebo recipients should be offered the efficacious vaccine from their trial, which will occur before longer-term efficacy and safety are known. The absence of a placebo group could compromise assessment of longer-term vaccine effects. However, by continuing follow-up after vaccination of the placebo group, this study shows that placebo-controlled vaccine efficacy can be mathematically derived by assuming that the benefit of vaccination over time has the same profile for the original vaccine recipients and the original placebo recipients after their vaccination. Although this derivation provides less precise estimates than would be obtained by a standard trial where the placebo group remains unvaccinated, this proposed approach allows estimation of longer-term effect, including durability of vaccine efficacy and whether the vaccine eventually becomes harmful for some. Deferred vaccination, if done open-label, may lead to riskier behavior in the unblinded original vaccine group, confounding estimates of long-term vaccine efficacy. Hence, deferred vaccination via blinded crossover, where the vaccine group receives placebo and vice versa, would be the preferred way to assess vaccine durability and potential delayed harm. Deferred vaccination allows placebo recipients timely access to the vaccine when it would no longer be proper to maintain them on placebo, yet still allows important insights about immunologic and clinical effectiveness over time.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Clinical Trials, Phase III as Topic/standards , Randomized Controlled Trials as Topic/standards , Clinical Trials, Phase III as Topic/methods , Cross-Over Studies , Double-Blind Method , Drug Administration Schedule , Follow-Up Studies , Humans , Randomized Controlled Trials as Topic/methods , Research Design/standards , SARS-CoV-2 , Treatment Outcome
5.
Ann Intern Med ; 174(2): 221-228, 2021 02.
Article in English | MEDLINE | ID: covidwho-890662

ABSTRACT

Several vaccine candidates to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19) have entered or will soon enter large-scale, phase 3, placebo-controlled randomized clinical trials. To facilitate harmonized evaluation and comparison of the efficacy of these vaccines, a general set of clinical endpoints is proposed, along with considerations to guide the selection of the primary endpoints on the basis of clinical and statistical reasoning. The plausibility that vaccine protection against symptomatic COVID-19 could be accompanied by a shift toward more SARS-CoV-2 infections that are asymptomatic is highlighted, as well as the potential implications of such a shift.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Randomized Controlled Trials as Topic/methods , Asymptomatic Infections , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase III as Topic/methods , Humans , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL